
Navigating Narrative Game Creation
A Beginner’s Guide to using Unity & Fungus to Create Narrative 2D Games

By Linda Ding (2T3) & Livia Nguyen (2T3) | May 4th, 2023

TABLE OF CONTENTS

Preface..4
About Our MRP.. 4
Choosing a Game Engine... 6

Unity..7

Fungus..9

Alternative Options... 11

RenPy...11

Twine..13

Twine Basics.. 13

Twine Tips!... 14

Getting Started.. 15
Preparation...15

Getting Started Tips!...15

Downloading Unity & Fungus..16

Setting up a Git Repository...17

What is Git?... 17

How Git can be useful for your project... 17

How to set up a Git Repo.. 17

Git Tips!... 18

Learning Unity & Fungus... 18
Introduction..18

Where to Begin?...19

Where to Find Help...19

Basics of Unity.. 21

Unity Editor Interface.. 21

Key Concepts... 22

Tips for Working with Unity!.. 22

Scripting in Unity..22

Tips for Scripting in Unity!...23

Basics of Fungus...24

First Steps in Fungus...25

Tips for Fungus!.. 26

Some Struggles & Solutions...26
Case 1: Using Player-Generated Text Input..26

Case 2: Moving the Fungus Camera in a 3D Space.. 29

Case 3: Dynamic Mouse Cursor...30

Case 4: Slot-Based Save System..33

Case 5: Quick Time Events..34

Conclusion...36
Resources.. 36

Online Courses..36

Readings... 37

Videos.. 38

Additional Optional Resources..38

Appendix... 39
Games Engine Comparison...39

Games To Play.. 39

Preface
Hello! We (the authors) are creating a video game for our Master’s Research Project (MRP) and
have thus decided to take on a special topics course to help prepare us for the development of
our MRP. This document is a product of said course and was written to document our findings
and lessons learnt while creating a prototype of our MRP.

This document is dedicated to future Biomedical Communication students who may be
interested in creating educational narrative video games but don’t quite know where to start
due to limited experience in this area. Specifically, this document will provide insight into why
we chose to use the Unity game engine and a plug-in called Fungus to create our narrative 2D
game, some of the problems we can across (as well as our solutions) and other helpful tips for
getting started.

About Our MRP
Before we dive into why we chose to use Unity or Fungus, it might be helpful to know a bit
about the project we wanted to use these programs for.

For our MRP, we are creating navEDI, a visual narrative educational 2D video game designed to
teach medical students about EDI (equity, diversity and inclusion). The storyline of navEDI will
revolve around a clinical interaction in an emergency room (ER) that can be played from two
different perspectives: 1) the medical student perspective which provides a safe learning
environment for practicing clinical skills and 2) the patient perspective which explores stigma,
cross-cultural barriers, and empathy through perspective-taking. The game features a
point-and-click interactable 2D environment as well as a choose-your-own-adventure
mechanic where the user’s choices alter the course of the story, resulting in different endings.
The primary target of the game is 3rd year medical students from the University of Toronto on
clinical psychiatry rotation at the Centre for Addiction and Mental Health (CAMH). NavEDI is a
downloadable computer game application intended to be used by students outside the
classroom/clinical setting. Secondary users of the game include students in adjacent fields and
other allied healthcare workers.

These are some of the key features of our game that need to be taken into consideration when
deciding how to build the game and what software to use:

- First person perspective & thoughts
- Player will see through the eyes of the person who’s story they are experiencing
- In-game dialogue text will include inner thoughts from the user’s avatar and

provide insight into their feelings which may not be outwardly shown
- Explore & interact with the environment and other non-playable characters (NPCs)

- Certain objects/people in the 2D environment are highlighted as interactable -
can click to manipulate or enter dialogue

- Fixed camera position
- Branching dialogue choices that affect game outcomes

- When in conversation with key characters, the user may choose between
multiple (3-5) dialogue choices - choices will affect outcome of conversation and
emotional states of other characters

- Original 2D illustrations for the environments and characters will be incorporated
- Soundscape reflects location & interactions with environment

- ER sounds will be integrated into the game to add immersion
- Additional sound effects will be triggered when interacting with certain objects

or characters as well as the UI elements

Figure 1: An example mock-up of an in-game moment from navEDI. Users can explore and
interact with certain objects in the ER to learn more and immerse themselves in the
environment.

Figure 2: An example mock-up of an in-game moment from navEDI. At key moments, users
will be able to choose the next course of action through dialogue choices. These choices will
affect subsequent conversations and alter the course of the story.

Choosing a Game Engine
WhyWe Decided on Using Unity with the Fungus Plug-in to Create our Narrative Video Game

First off you might be thinking, ‘What is a game engine?’ A game engine is defined as being a
set of software tools or application programming interfaces that optimize the development of a
video game. Game engines provide game developers with a framework that enables them to
create a video game without having to build/code all the required systems/components (e.g.

physics, graphics, rendering, collision detection, etc) from scratch. Examples of some popular
game engines used today include Unity, UnReal Engine, and GameMaker.

Now that you understand the purpose of using a game engine when developing a video game,
we’ll walk you through our process for deciding on an appropriate game engine for our project.
We’ll start first with an introduction to some of the different game engines we considered, how
they operate, their advantages, limitations, and etc.

Unity
Unity is a 2D/3D game engine and powerful cross-platform IDE (integrated development
environment) for developers. It is primarily used to develop video games and simulations for
computers, consoles, and mobile devices.

We ultimately chose to use Unity for the development of our project. Unity’s capabilities would
allow us to create the base visual narrative game in a visual novel-like style with branching
dialogue choices and interactable objects in a 2D environment. While working with Unity
would be a steeper learning curve, we knew this engine would allow us to work with less
limitations and create a game with more interactivity. Since Unity is capable of building a wider
variety of games compared to Ren’Py, which is specific to visual novel style games, learning
Unity would allow us to develop skills that are more transferable and applicable to potential
future projects. Additionally, we knew that the Fungus plug-in for Unity could be used to assist
us in building the game by providing us the base code for interactions common to visual novel
style games.

Unity

Language(s) C#

Cost Free with student plan

Advantages - Unity is a cross-platform engine.
- Unity editor is supported on Windows, macOS, and Linux

platforms
- Extensive Unity user manual available
- Student plan provides access to many free assets and learning

resources (lesson plans for beginner to advanced users)

Limitations - Requires more in-depth coding knowledge

https://learn.unity.com/

Figure 3: Game moments from Missed Messages. (2019) by Angela He. Missed Messages. is a
short visual novel game about life struggles and the importance of communication. The game
was created in Unity and features dialogue choice options that can lead to 4 different endings.

https://store.steampowered.com/app/812810/missed_messages/
https://angelahe.dev/

Fungus
Fungus is a free open-source visual scripting based plug-in for Unity developed by Snozbot.
Fungus is made for building narrative games and designed to be easy to learn for beginners to
Unity, especially for those with no coding experience. It features an intuitive visual scripting
system (workspace and windows) that allows users to add storytelling features (dialogue,
sprites, music/sfx, etc.) to their Unity game without requiring one to code.

Figure 4: A screenshot of Fungus’s visual coding interface featuring one of its most defining
features: the flowchart which helps users visually see how different parts of code interact.

There are many tutorials and courses available for getting started with Fungus and that walk a
new user through the process of developing a visual narrative game from beginning to end.
Fungus simplifies the coding process by using drag and drop blocks that can be connected
together in Fungus’ flowchart window while still allowing for customization through C# code.

Fungus has many notable features that lends itself well to creating narrative games. One of
these is the Say Command. This command is the base building block for dialogue within
Fungus and can be programmed to be associated with a specific character in your story. This
means that whenever a specific character speaks in-game, their dialogue is associated with a
certain colour, style and sound effect. Fungus also has Portraits which can be linked to these
Say Commands so that an image of the character speaking appears with their dialogue text.

Portraits can be animated and you can have multiple Portraits for one character. This makes it
easy to swap different versions of character art (e.g. a character with multiple expressions).
Menu commands allow you to easily create a branching narrative through through the
presentation of dialogue choices to the player that link to other game events.

Many game studios use Fungus mostly for its narrative system, but there are many tutorials
available that explain how to use Fungus to create games beyond this (e.g. turn-based
role-playing games)!

Fungus

Language(s) Visual drag/drop in flowchart window w/ C# or Lua for customization

Cost Free and open-source

Advantages - More feasible than working entirely with only Unity
- Easy to use and approachable editor window for setting up

interactions and more
- Documentation and training videos available on website
- Decently active community and discord channel

Limitations - Still requires coding for customization
- Can make it difficult to add/modify certain game features (e.g.

adding animated portraits/expressions)

https://fungusgames.com/

Figure 5: A screenshot of a BAFTA-nominated narrative puzzle game called Assemble with
Care (2019) made by Ustwo Games using Fungus. Check out this article to see how they used
Fungus for their prototypes!

Alternative Options
There are many game engines available out there. Therefore, it’s important to consider some of
the following questions when choosing a suitable engine for your project:

● What type of game do you want to create (2D/3D)?
● What are the main features you want your game to have (mostly dialogue-based, etc.

point-and-click exploration, etc.)?
● What is your comfort level or experience with coding in various languages?

The following game engines can also be considered for creating a narrative game.

RenPy
Ren’Py is a popular game engine that can be used to create visual novels and life simulation
games that can operate on both computers and mobile devices.

We were first introduced to Ren’Py through Willow Yang (2T1) who used the engine to
develop their MRP, Adventure Down Hidden Depths (AdventDHD). AdventDHD is a gamified

https://store.steampowered.com/app/1202900/Assemble_with_Care/
https://store.steampowered.com/app/1202900/Assemble_with_Care/
https://www.gamesindustry.biz/three-free-tools-to-level-up-your-prototyping
https://willowdesign.github.io/portfolio/adventDHD.html

self-directed ADHD coaching tool that uses the visual novel medium to create a unique and
engaging e-learning experience.

We considered Ren’Py as our Plan B game engine for development due to its specific features
for creating narrative games, intensive documentation, active community, and our familiarity
with the Python language.

Ren’Py

Language(s) Python

Cost Open source and free

Advantages - Anyone can create a visual novel without needing to code so it’s
much easier to pick up than Unity

- Python scripting allows for customization and the creation of
more complex simulation games

- Extensive documentation (comes with detailed reference manual)
- Many tutorials and plug-ins available
- Popular game engine so decent community

Limitations - Limited movement of character in 3D so would be limited to
mostly point/click interactions with the environment

Figure 6: A screenshot of a popular visual novel game called Doki Doki Literature Club (2017)
made by Team Salvato using Ren’Py.

https://renpy.org/latest.html
https://store.steampowered.com/app/698780/Doki_Doki_Literature_Club/

Twine
Twine is a free, open-source tool that can be used to create interactive non-linear or branching
narrative experiences through hypertext. You can either download the desktop application or
just use it in your browser. A good place to start learning Twine is its documentation called the
Twine Cookbook. To get the most out of Twine, it is helpful to have some knowledge of HTML,
CSS, or JavaScript. Nevertheless, even without extensive coding you can add text-based
designs, 2D pictures, and other simple audio/visual elements. As our MRP script features a
branching narrative where in the player follows an overall storyline but is able to make choices
that affect individual sections of the plot and gameplay, we decided to use Twine to create an
interactive prototype of our draft scripts so we could collect feedback.

Twine

Language(s) HTML, CSS, or JavaScript

Cost Free

Advantages - Can be used to prototype large branching story games to test the
progression of choices and visualize different player routes

- Outputs to an HTML file that can be sent and opened on any
computer

- Possible to integrate many different features through code (e.g.
arrays, audio, conditional statements, date and time, sidebars,
images, keyboard events, loading screen, pop-up windows,
player statistics, saving games, etc.)

- Documentation is well-structured and includes a number of
helpful examples

Limitations - Not entirely intuitive, quite a bit of coding required for more
complicated branching and game-like features

- Cannot build the whole game in Twine to include interactive
components

- Community is not as big (although still quite good) and it’s more
difficult to find answers to your questions on forums

Twine Basics

The Twine editor calls individual projects "stories". The main components of Twine stories are
"passages". Passages are basically blocks of dialogue or sections of code. You can connect
passages by adding two opening and closing brackets around the title of another passage. In

https://twinery.org/cookbook/
https://twinery.org/2/#!/welcome

the compiled HTML version of the story, there will now be a link to navigate between the two
passages. This is how branching choices are created.

Story Formats
Before starting anything in Twine, you first need to decide on what type of format your Twine
story will take as there are multiple options. Each story format provides a different visual
layout, set of macros (functions), and internal JavaScript functionality. We recommend looking
through the different formats and finding the one that works the best for your abilities and
what you want to create.

Based on our experience with two of the Twine formats, this is what we can say about them...
- Harlowe is the default story format for Twine and is good for beginners as it is easy to

learn and has a bunch of built-in features as well as more of a detailed editor interface.
- SugarCube (which is the format we chose to use for our script prototype) has more

functionality than Harlowe but it helps to have some experience with HTML, CSS, and
JavaScript to fully make use of this story format.

Twine Tips!

❖ Before you start creating anything in Twine, you should have a script to work with
- it doesn't need to be final as it is still relatively easy to make changes later down
the line, but it will help a lot with planning/linking passages as you work.

❖ If you have no previous experience in Twine, start with a small practice story first
- something simple with a couple of choices just so you get a hang of things.

❖ Keep in mind the following consideration for creating branching narratives:
➢ Does a character or interaction serve a specific purpose or is it filler? The

consequences of the player's actions should be visible through meaningful
changes to the game narrative and/or mechanics. It’s important to respect
the player's agency and honour their choices.

❖ There are many cool Twine templates that are free to download on itch.io and
Github! Here is an example of one:
https://awmorgan.itch.io/twine-sugarcube-template

https://awmorgan.itch.io/twine-sugarcube-template

Getting Started

Preparation
Before you even start thinking about working in Fungus or Unity, you need to have a solid idea
for your game. Flush out things like your intended audience, core game mechanics, visual style,
user flow, and etc. before starting any development of your game. Consider creating a game
design document (GDD) to help solidify the direction you want your game to take. You can take
a look at this template to start! GDD’s are also useful if you need to pitch your game idea later
on. Check out these examples of GDD’s: Bioshock and Silent Hill 2.

Now that you have solidified the idea for your game, you can start working on a script for the
dialogue portion of the game as well as some basic visual assets (e.g. character art). The
assets don’t need to be finalized at this point but can act as a placeholder as you start to play
around in Unity. We recommend giving this article by Angela He a read! It gives a good
overview of all the things you need to consider as you make your game from start to finish.

Getting Started Tips!

❖ There is a lot to learn in Unity so start as soon as you can!
➢ We (the authors) started learning Unity and exploring narrative game

development during the summer between 1st and 2nd year.
■ This helped us a lot because during the term, we were super busy

with course work and getting a head start over the summer relieved
some pressure.

❖ Get inspired!
➢ Unity has a bunch of case studies that explore how various games use the

platform:
■ https://unity.com/case-study

➢ Check out game development logs / blogs.
■ There are some game devs that stream their progress on Twitch or

upload progress videos on YouTube.

https://drive.google.com/file/d/1W6UcKukfYqim-3SiXWOAOXw2Cd2l1WHN/view?usp=share_link
https://www.systemshock.org/index.php?topic=2121
https://drive.google.com/file/d/1nxvdXasP-HsRCt62cHK3wF_pIrJpYx5T/view?usp=sharing
https://www.freecodecamp.org/news/from-zero-to-game-designer-how-to-start-building-video-games-even-if-you-dont-have-any-experience-5e2f9f45f4bb/
https://unity.com/case-study

➢ Check out Game Developers Conference videos (our recommended
watches for narrative games are located in this list in the Resources section
of this document).

❖ Play video games! (for research purposes only of course)
➢ There are so many amazing narrative games out there that you can find

inspiration from!
■ You can find games on video game publishing platforms such as

Steam (https://store.steampowered.com/) or itch.io (https://itch.io/).
■ You can also refer to our list of curated narrative-focused video

games that we recommend you play.
➢ It is important to not just passively play these games. Take note of things

that you think worked well and didn’t work as well (within the story, UI,
art, sound, gameplay, general game experience, etc.).

■ We organised our findings on a Miro board and decided on key
takeaways that we wanted to consider for our game.

Downloading Unity & Fungus
Both Unity and the Fungus plug-in are free to download and work on both Windows and Mac
OS. See the instructions and links below to get started…

Unity
To download Unity, go to this link https://unity.com/ and choose a plan. The personal plan is
free or you can apply for the student plan through this link. You will also need to download
Unity Hub, which you will use to manage multiple installations of various versions of the Unity
Editor, create new projects, and access your work. For our prototype, we used the newest
version of Unity (2021.3.24f1) as this was recommended in the Fungus installation
instructions.

Fungus
Fungus is not currently available in the Unity Asset store (even though the main Fungus
website suggests that you can get the plug-in from the store). Instead, you must download
Fungus from Github through the following link: https://github.com/snozbot/fungus/releases. At
the time of writing of this document, we used the most recent version of Fungus: v3.13.8. Once
the package is downloaded, import Fungus into your Unity project by selecting Assets > Import
Package > Custom Package > navigate to downloaded fungus package and open > in the

https://store.steampowered.com/
https://itch.io/
https://unity.com/
https://unity.com/products/unity-student
https://github.com/snozbot/fungus/releases

popup box, select “All” and then “Import”. If there is a warning about changed API and whether
to automatically update, choose “Just for these files” for now.

Setting up a Git Repository

What is Git?
Git is a version control software that can be used to manage contributions to a project within a
team as well as track where changes to the project have been made over time. If someone
changes a file, Git records the differences between the old and updated version and maintains
a history. This allows one to preserve different versions, go back to a previous version (version
control history), and review changes.

GitHub is a public platform to host a git repository online. It allows for easier collaboration with
multiple people as you can see all the files, their source code, and what the contents of each
commit is. GitHub supports branching which allows people to develop the same code
separately without interfering with one another. Git will be able to determine when there is
conflict between the branches and can help merge the changes. On GitHub, if you make your
project “public" (as opposed to private), people can view your code, learn from them, help
modify and work on parts of it, etc.

There are many free resources online that explain the basics of Git and related terminology you
should know when working in Git. Here is an article and a link to the official Git documentation
that you can check out!

How Git can be useful for your project
Setting up a git repository for your project allows for smoother collaboration between
developers as you don’t have to pass files back and forth and collaborators can work on
different sections of the project simultaneously. Overall, this makes development more
efficient, stream-lined, and safer as you can work with a history of all the changes made. We
highly recommend setting up a Git repository, especially if you are collaborating with multiple
people on your project!

How to set up a Git Repo
- To create the git repo for the Unity project, there are many resources online. Here are

some that you may find helpful:
- This YouTube video by Brackeys: How to use GitHub with Unity

https://youtu.be/qpXxcvS-g3g
https://opensource.com/article/19/2/git-terminology
https://git-scm.com/doc

- If you want to make use of Git Desktop and the Github Browser
(recommended)

- This article by Unity at Scale:
- If you want to create the repository through using a command line

window or terminal (this method is not recommended if you have no
previous experience working with this window/terminal)

Git Tips!

❖ When creating your repository, make sure to name it appropriately, add a brief
description, and choose if the repo is private or public
➢ Generally, if you plan on using paid 3rd party asset files, you should not be

committing these to a public repository (effectively giving away these
assets for free). It might be safer to go with a private repository.

❖ Make sure your repository has a Unity .gitignore file.
➢ This is a text file that tells git what files should not be included in the

version control - ultimately, this will save space and reduce the size of the
uploads to the repo by omitting some of the temporary meta files Unity
creates that are only used by Unity and aren't necessary to be included.

❖ If you are collaborating with others and someone else has committed changes to
the repo, fetch and pull first on your end before adding onto the project and
continuing to make changes.

❖ Leave useful descriptions when you commit your changes!
➢ Include things like what was changed, what still needs to be fixed, any

other important things to note
❖ Check out this free Udemy course on Git.

Learning Unity & Fungus
A look into our mindset for learning and some basics in Unity and Fungus (just enough so you
can hopefully understand the rest of this document) as well as some tips!

https://unityatscale.com/unity-version-control-guide/how-to-setup-unity-project-on-github/
https://www.udemy.com/course/intro-to-git/

Introduction
It’s important to have an open mindset when starting to learn Unity. Try not to be discouraged
easily! There is a lot of learning to do - you will definitely have to learn as you go and it’s not
possible to know everything before starting a project in Unity. Just take your time and try to
have fun with it!

We highly recommend building some sort of foundation in the basics of coding first as this will
help you greatly later on. It is risky and unsustainable to just rely on copying code found on
forums and trying to build out a full project this way. If you take the time to build up some type
of foundation, you will be able to understand what you are looking at in the code and how it
can be applied to your projects. This also opens up the possibility of tweaking any code you
find to suit your own needs!

Where to Begin?
A good place to start learning Unity is the Learning Pathways on the Unity Learn website
which are guided learning experiences created by Unity. You can track your progress as you
progress through the structured lessons, earn badges, and try out practice exercises. A word of
advice: be selective on which lessons you spend the most time on. So for example, if you plan
on creating a 2D game, perhaps you can spend less time on the 3D-focused tutorials. Refer to
the Resources List to see what tutorials we focused on in the Unity Learning Pathways.

To start learning some Unity basics, you can also check out the “Working in Unity” Section
within the Unity Manual. It walks you through the basics of Unity’s interface, working with
Scenes, GameObjects, asset workflow, etc. There are also numerous tutorials available on
YouTube (Brackey’s channel has a ton of helpful tutorials) for learning Unity.

If you want to start building a foundation in coding with C#, there are also an astounding
amount of free resources available online such as Microsoft’s free courses on C# or W3School’s
learning resources. You can also give this Unity article on learning C# for beginners a read.
Finally, we encourage you to make your own notes as you embark on your Unity/Fungus
learning journey as you can refer to these notes later once you start working on your game!

Where to Find Help
Both Unity and Fungus have their own dedicated documentation. You should be referring to
these resources constantly as you build out your game.

https://learn.unity.com/
https://docs.unity3d.com/Manual/UnityOverview.html
https://docs.unity3d.com/Manual/UnityOverview.html
https://www.youtube.com/@Brackeys
https://dotnet.microsoft.com/en-us/learn/csharp
https://www.w3schools.com/cs/index.php
https://www.w3schools.com/cs/index.php
https://unity.com/how-to/learning-c-sharp-unity-beginners

Unity

- Unity Community
- Forums, blogs, etc.

- Unity Documentation
- Unity Asset Store

- Contains free and commercial assets made by Unity and members of the
community - lots of free hidden gems

- Can import and download them directly in the package Manager window
in Unity

- Unity Editor Manual
- A user manual to Unity that should be consulted frequently

- Unity Scripting Reference
- Useful to have open when scripting

- Describes methods and properties of various classes with
example code

Fungus

- Fungus Documentation
- Fungus Tutorial Videos

- Some may be outdated, but still gives good overview
- Link to join the discord server for fungus:

- https://discord.gg/99RqraQ
- Quite active! People are friendly and helpful!

- Fungus Forums
- Not as active as the discord server but there still seems to be one dedicated

admin who moderates the forums and replies to questions.

https://unity.com/community
https://docs.unity.com/
https://assetstore.unity.com/
https://docs.unity3d.com/Manual/index.html
https://docs.unity3d.com/ScriptReference/index.html
https://github.com/snozbot/fungus/wiki
https://github.com/snozbot/fungus/wiki/tutorial_videos
https://discord.gg/99RqraQ
https://fungusgames.com/forum/

Basics of Unity

Unity Editor Interface

Figure 7: A screenshot of the basic Unity interface.

Scene view / Game view
● Interactive window to edit the current Scene and view the game world
● Press to enter Game view to test game live in the Editor
● Note: Important to stop the game completely if making permanent changes
● Can select and manipulate objects

Hierarchy window
● List of GameObjects in Scene and their parent-child relationships (similar to the layer

window in Adobe Photoshop for example)

Inspector window
● Displays components/settings of selected game objects, each component contains

properties/behaviours of the game objects that give it functionality

Project window
● Acts like a file explorer - displays and can organize assets/files for project
● Can add folders and create new game objects by right-clicking in this window

Key Concepts
Unity projects are made up of assets and scenes along with other components. A scene is a
fundamental unit of the playable world in Unity. A project must have at least one scene but
your game can be organized into multiple scenes that can be considered discrete experiences.
For example, you can have one scene per game level, a separate scene for the main menu, etc.

These scenes contains GameObjects (GO) which are made of components that describe the
properties and behaviours of each GO. The transform component is automatically attached to a
GO but you need to add others manually through the inspector.

The main camera in the hierarchy is the camera that captures and displays your Scene to the
player as in Game view. You can move the camera using transform tools and also switch
between 2D/3D views. Each camera is equipped with an audio listener component that will be
used to “listen” to audio added to the scene.

Tips for Working with Unity!

❖ Avoid feature creep which is the tempting but risky tendency to add shiny new
features to a product vs. sticking to the ones agreed upon during pre-production.

❖ Keep your Unity hierarchy and files organized! Make sure each asset, script, etc. is
named appropriately and organized into appropriate groups/folders.

❖ Adding audio (background music, sound effects, etc.) to your game is really the
cherry on top. Trust. It makes such a big difference.
➢ Sound can create mood (establishes how the audience should feel about

what is occurring), a sense of space (provides a sense of where they are,
continues to provide context), enhance interactions (suggest interactions
between an object and an environment), and more.

Scripting in Unity
Unity uses the C# programming language. Here is an article on best practices when coding in
Unity. Scripts that you create can be applied as a component to a GameObject and linked to
different buttons to tell Unity what that button should do when clicked for example.

https://www.gamedeveloper.com/design/50-tips-and-best-practices-for-unity-2016-edition-

To start a new script:

- Assets → Open C# Project → opens Visual Studio (Unity’s default editor) OR Create →
C# Script → open to edit

- Note: Make sure the name of the script is correctly referred to in the
MonoBehaviour class within every script. For example, if my script is named
“CloseOverlay”, at the beginning of my script, there should be a line that looks

like this: .
- If the name of the script does not match this, you will get an error!

- When you create a new script in Unity, the default file will contain code that imports
libraries needed to run the script and 2 basic functions: Start (called once when the
program first runs) and Update (called once per frame).

A recommended general workflow for scripting:
● Determine the main interactions and game mechanics you want for your game.

Organize these based on priority and take into consideration their feasibility given your
project timeline.

○ Consider using multiple KanBan charts to keep track of the progress of each
feature as it is coded into your game.

● Break these down into more granular parts/tasks that can be translated into chunks to
eventually code.

○ For example, if your goal is to move a GO a certain amount forward when the
user clicks the button. You can break this into small tasks such as finding the
initial position of the GO, storing this position as a variable, moving a GO by a
certain amount, etc.

● Experiment with completing these small tasks using basic assets in a separate scene to
test your idea. Gradually, build up the tasks to code the full interaction.

○ Make sure to check that each line is working properly and that you understand
what each line of the code does.

● Finally, integrate the knowledge you have gained and code you have developed in these
smaller test scenes and integrate them into your main Unity project.

Tips for Scripting in Unity!

❖ It’s important to do beta tests well in advance of the deadline to ensure you have
extra time to solve any bugs as you will likely come across lots.

❖ Add useful comments throughout your scripts. These comments should be
detailed and frequent enough so that someone can understand your code.

❖ Don’t give up!
➢ It’s super rewarding when you figure stuff out on your own after trying your

best to push through and problem solve - you will learn a lot more this
way as opposed to googling everything when it starts to get slightly hard.

❖ At the same time, knowing when and HOW to ask for help
➢ Sometimes, some things you are trying to accomplish are outside of your

current skills/knowledge and this is perfectly fine!
➢ There are many ways you can reach out for help such as Unity’s forums,

the Fungus discord, friends who code, professors who are knowledgeable
in Unity. A big part is also knowing how to format/ask your question so you
get a good answer.

■ Check out this forum post for some great tips!
■ If you posted a question to a forum and end up finding a solution,

make sure to post it! It can help someone in the future who has the
same question as you.

Basics of Fungus
A good place to start is the Getting Started section of the Fungus wiki.

The Flowchart is one of the main areas you will be working within when using Fungus. This
window displays all the blocks (essentially groups of code) and visualizes how each of the
blocks are connected to each other through a flowchart. Within each block are Fungus
commands which can be added through the inspector of the block and link blocks together. If
you are not as familiar with how Unity UI works, it might be a bit confusing on how to change
the default settings. Event handlers determine when a block (and its associated commands)
should be executed.

To display the Flowchart editor window, select Window > Tools > Fungus > Flowchart
Window. For convenience, you should dock the Flowchart window somewhere so it is easily
accessible. You can have multiple flowcharts in one scene although you must make sure only
one has Execute On Event: Game Started block or there will be conflict.

https://youtu.be/KxGRhd_iWuE
https://answers.unity.com/questions/133869/how-to-ask-a-good-question.html
https://github.com/snozbot/fungus/wiki/getting_started

There are 3 types of blocks:

1. Event (blue rounded rectangle)
a. These blocks execute on an event (e.g., the Game Started Block which is the first

block that will be executed Automatically created in flowchart)
2. Branching (orange long hexagon)

a. Calls 2 or more other blocks. Arrows show flow of execution.
3. Standard (yellow rectangle)

a. Doesn’t branch to 2 or more blocks

Figure 8: A screenshot of a Fungus Flowchart with the 3 types of blocks. This flowchart is from
an example scene included with the Fungus package.

First Steps in Fungus
● Play through some example Fungus scenes

○ In the project window, open (for example) The Hunter scene (FungusExamples >
TheHunter > TheHunter.unity).

■ Press play and click through the example game.

○ Try playing the other example scenes and watch how the gameplay is
controlled by the flowchart in the Fungus Script window.

● Start playing around in Fungus or find some tutorials to follow! Here is a good video to
start off with by JollyFranchers!

Tips for Fungus!

❖ Have a refined script before starting anything in Fungus.
➢ This will make it easier to work in Unity and create the Fungus flowchart as

it can take up valuable time if you need to go back and make lots of small
changes to your script once you have started coding.

❖ Make use of the debug command script that comes with Fungus!
➢ You can add this to any block, input a variable or component you want to

check and the command will send a message to your debug console. This
script can be found under Fungus > Assets > Fungus > Scripts >
Commands. DebugLog.cs

Some Struggles & Solutions
Some examples of issues we encountered while working with Unity and Fungus & how we
solved them. Hopefully this can help you if you ever encounter a similar problem!

Case 1: Using Player-Generated Text Input
In video games, sometimes there is a screen were the player can create their own character. At
the end of this character creation screen, the player is expected to name their character which
is then used in dialogue throughout the rest of the game. This requires the game to collect and
utilize a player-generated text input.

https://youtu.be/F7UkVrV7168

Figure 9: An example screenshot from Doki Doki Literature Club where the player is asked to
enter their name as a text input. This name is then referred to later in the game.

Problem:
As someone new to Fungus and Unity, it may be unclear how to do this at first and once you
start to look into it more, you may realize that you need to use variables and set up a variable
and various things in the UI and within the components for this to work. There are scattered
answers on how to do this in various forums as well as some tutorial videos.

Solution:
There are a number of steps to set up the appropriate commands within a flowchart block.
Note: The following steps are for using a user-generated name but these same
principles/concepts for collecting input and storing it in a variable can be applied to other cases.

Steps:
1. Add an input field to your canvas though GameObject > UI > Panel, Button, Input Field.
2. Create a flowchart block within the flowchart window:

a. In “Execute on Event”, select End Edit.
b. Put the input field you just created into the Target Input Field component.

i. Once the player presses enter, the flowchart block will enter.
3. Determine your string (text) variable that will store the inputted text. For example,

“playerName” if the text input will become the player’s name.
a. This variable should be formatted like {$playerName}

https://store.steampowered.com/app/698780/Doki_Doki_Literature_Club/

b. Make sure the variable you pick up the name in is set to Public (not Private) so it
can be used in other flowcharts within the scene.

4. In the flowchart with end edit, add a Get Text command. To set up this command, place
the text box from the input field in Target Text Object, and select the String Variable
you want to hold that information.

5. In any block following this, add a Say command and type out the dialogue text as usual
including the variable.

a. This say command should now print out the dialogue including the player’s
name that the player input earlier.

Figure 10: A screenshot of the commands within a block that is set up to collect the player's
text input and store it in a variable to use later on in a Say command.

Resource(s) Used:

- Fungus 2.2 features
- https://muut.com/i/fungus/general:input-field-help
- https://muut.com/i/fungus/general:adding-enter-player-name
- https://fungusgames.com/forum#!/general:could-someone-help-me-need
- There is an example scene under Assets>FungusExamples>EnterName that you can

see in action and take a look at the script included for reference.
- Check out this add-on by Just Us Games which works with user-defined gender

Case 2: Moving the Fungus Camera in a 3D Space
Although our game will be mostly in 2D, we were thinking of ways we can utilise the 3D space
that the 2D assets are placed in within Unity to our advantage. We wanted to experiment with
zooming in/out or moving the camera in the Z direction during specific moments of our game.

Problem:
The Fungus plug-in is described on its website as a plugin that works for Unity 3D so one may
think that the default Fungus camera would be able to move in 3D space freely. Wrong! The
current default View system in fungus does not work for 3D environments as the Fungus
camera as-is is only able to move in the X and Y directions, and is locked in the Z-direction.

Solution:
Knowing that Unity cameras are able to move in the X,Y and Z direction normally, there must
be something different about the Fungus camera - and this is likely through the code it is linked
to. So, looking through the scripts for the one linked to the Fungus camera, there was a script
named CameraManager.cs within the Fungus folder which seemed promising. Looking through
the code, there were a couple lines of code (26-30) that seemed to deal with the Z coordinate
of the camera.

https://youtu.be/S3TKQ86xsJM?t=569
https://muut.com/i/fungus/general:input-field-help
https://muut.com/i/fungus/general:adding-enter-player-name
https://fungusgames.com/forum#!/general:could-someone-help-me-need
https://github.com/zelgadis/fungus-gendered-terms

Figure 11: A screenshot of the CameraManager.cs script and the lines of interest that deal with
the camera’s Z coordinate. Line 27 is highlighted.

Since this script is a core component of Fungus, we were a bit hesitant on editing the code
without knowing more, as we were unsure if this would affect other things. So after some
searching on the internet, we found a forum post that talked about this part of the script and
confirmed our suspicions that these lines of codes would have to be changed. Based on this
forum post, here are the steps to allow the Fungus camera to move in the Z direction:

1. Open up CameraManager.cs script found under Fungus>Scripts>Components
2. On line 27 of the code, that reads “ [SerializeField] protected bool setCameraZ = true;”

a. Change the bool “true” to “false”
3. Save your changes to the script.
4. Note: If you ever update fungus, you will need to go back and make this change again.

Resource(s) Used:
- 04 Fungus Camera
- Confirmation of answer found on the Fungus forum:

https://fungusgames.com/forum#!/general:camera-in-3d

Case 3: Dynamic Mouse Cursor
A key part of the exploration part of our game is that the mouse cursor is dynamic and will hint
at interactable elements within the environment. For example, a neutral mouse course will be
the default visible cursor used for general clicking with the menu screens and for choice
selection. There is also a speech bubble cursor that indicates the ability to converse with
certain characters within the environment. The last type of mouse cursor looks like a

https://youtu.be/BTJpWheqTLA
https://fungusgames.com/forum#!/general:camera-in-3d

magnifying glass and indicates the ability to observe something more closely within the
environment. These last two types of cursors should appear when hovering over the
associated object in the environment that they are linked with. This is to give the player a hint
as to what type of interaction will happen when they click on the object they are hovering over.

Problem:
It was difficult to find documentation on the Set Mouse Cursor command or to know this
command existed without being introduced to it previously as it is nested under Sprite
Commands within the documentation. Also, to fully recreate the hover effect envisioned for our
game, this command would have to be paired with another edit within the interactable sprite’s
components itself.

Solution:
Here, we will document what we know about altering the mouse cursor in Fungus and how to
create a dynamic mouse cursor as described above.

Set Mouse Cursor Command

- The Set Mouse Cursor command changes the default sprite of the cursor.
- It can be found under the Sprite > Set Mouse Cursor.
- This command needs to be applied to the Game Started block (the very first

block of the game in the flowchart).
- To set up the command, you must input the image of your new cursor in the

“Cursor Texture” input field.
- An example of use of this command is hidden in the DragAndDrop Fungus Example

scene so you can take a look at this for reference as well.

Figure 12: A screenshot of the Set Mouse Cursor command set up in the Inspector. Note that
this command executes on the event of the game starting.

Change Cursor On Hover
You can make the mouse cursor change when hovering over interactable objects. This can be
done within the inspector of a clickable sprite Game Object.

- To create a clickable sprite GO, Tools > Fungus > Create > Clickable Sprite
- Within the inspector of this GO, drag your hover cursor image into the “Hover Cursor”

input field - this field will be empty by default

NOTE: To input your mouse cursor image properly, once uploaded into your asset folder, you
must click on the image and change the Texture Type to Cursor.

Resource(s) Used:
- Fungus 2.2 features
- Check out this forum post if you are interested in adding a highlighting hover interaction

to sprites.

https://youtu.be/S3TKQ86xsJM?t=569
https://muut.com/i/fungus/hints-and-tips:highlighting-a-clickable-sp

Case 4: Slot-Based Save System
A save system in a video game allows the player to save their current game progress so that
they can continue from where they left off at a later time. A slot-based save system makes use
of “save slots” that the player chooses to save their game data to - this allows you to have
multiple playthroughs of the game at the same time or even if set up properly, allows the
player to go back to a previous part of their playthrough. There are usually a limited number of
slots available and managing these slots (e.g. deleting a save) is done through the game’s
menus.

In our game, a save system is an important part of our game’s functionality as considering the
length of the game and our end users, we do not expect our users to finish the game in one go.
Thus, being able to save their current game progress and return back to the game at the spot
they left off at is an important feature for us to include. Also, we intend for the players to have
multiple playthroughs of our game so having multiple save slots available is ideal.

Problem:
Unfortunately, the current Fungus Save System is currently in Beta and has yet to be updated
for a while now. The Fungus Save System as-is is not a slot-based save system and includes
functionality that we did not want in our game such a rewinding and restarting. Also, the
current system relies on Save Points which are stored as the player progresses the game to
build a Save History. These Save Points must be manually added in the Flowchart at specific
points in the game and when reloading the game, the player will be brought back to this
specific save point. This system did not exactly allow the player to save their progress at any
moment of the game, but just at specific points. Building a new save system from scratch that
worked with Fungus or adapting the current one to suit our needs was a task outside of our
current knowledge with C# and scripting.

https://github.com/snozbot/fungus/wiki/save_system

Figure 13: A screenshot of Fungus’ built-in save system which can be seen located on the top
right of the image. Users can save, load and restart their game through this menu.

Solution:
Fortunately, CG-Tespy has graciously released a slot-based save system on Github to replace
the built-in Fungus save system. This save system is closer to other more typical save systems
and has gained lots of popularity within the Fungus community. Check out the Getting Started
section of their wiki to read about how this save system works and how to implement it into
your game. There is also API documentation available on the specific commands and methods
included in this package as well which can be helpful.

Resource(s) Used:
- https://muut.com/i/fungus/fungus-development:created-a-free-slot-based-s
- https://github.com/CG-Tespy/Fungus-Slot-based-Save-System

Case 5: Quick Time Events
A quick time event (QTE) is when the player needs to complete some interaction, such as
pressing a specific button, within a predefined time in order to trigger a certain event. Usually
QTEs result in multiple paths (ie., if you complete the QTE successfully vs. not, there are
different outcomes). QTEs are a possible way to add interactivity and actively engage the
player. Note, there is a time and place for QTEs since they often induce feelings of stress and
add pressure as they test the player’s reaction time and quick decision making skills.

https://github.com/CG-Tespy/Fungus-Slot-based-Save-System
https://github.com/CG-Tespy/Fungus-Slot-based-Save-System/wiki/Getting-Started
https://github.com/CG-Tespy/Fungus-Slot-based-Save-System/wiki#user-content-API_Documentation
https://muut.com/i/fungus/fungus-development:created-a-free-slot-based-s
https://github.com/CG-Tespy/Fungus-Slot-based-Save-System

Figure 14: A quick time event from the adventure role-playing game Detroit: Become Human
(2018) by Quantic Dream. The time to complete the QTE is visualized by the decreasing white
bar below the four choices available.

Problem:
There is no built-in QTE functionality within the Fungus plug-in. Additionally, none of the
in-box commands within Fungus seemed to be relatively easily adapted into creating a QTE.
There are QTE systems within the Unity Asset Store and some discussion in forums on this
topic but nothing about a QTE system that works with Fungus and its base components. With
our current skills in C# and scripting in Unity, building a QTE script or adapting an existing
script to work with Fungus seemed like a daunting task with questionable feasibility.

Solution:
Luckily, after lots of searching, we came across a custom Fungus QTE command script made by
Albert Gao within a public Git repository. This script includes the components needed to create
a QTE scen. These components include a count timer (how long should the QTE last), QTE
button (the button the player needs to press within the time limit), block for when the QTE is
failed as well as for when the QTE is successful. Although we have yet to implement QTE’s
within our own prototype at the time of writing this document, we intend on using this script to
recreate a rather stressful decision our patient character needs to make when they first arrive
at the ER within our game.

https://store.steampowered.com/app/1222140/Detroit_Become_Human/
https://www.quanticdream.com/en

Resource(s) Used:
- https://github.com/Albert-Gao/Fungus-QTE-Command

Conclusion
First of all, congratulations on making it through this document! We understand that we
covered a lot here but hope we were able to provide you with a basic understanding of what
you can do with Unity and Fungus (in terms of creating narrative games), where/how to get
started, and helpful troubleshooting tips.

If you have any questions about anything you’ve read here or would like to connect, feel free to
reach out to us:

Livia Nguyen - livianguyenvisuals@gmail.com

Linda Ding - nanlinda.ding@gmail.com

Good luck out there!🍀

Resources
This is a compiled list of some additional resources we used throughout our Unity, Fungus, and
narrative game creation learning journey. Feel free to check them out!

Online Courses
Freeman, J. (2016, December 7). 2D Game Design and Development Essential Training.
LinkedIn Learning.
https://www.linkedin.com/learning/2d-game-design-and-development-essential-training/welc
ome?u=56982905
❖ Time: 1hr 9min

https://github.com/Albert-Gao/Fungus-QTE-Command
mailto:livianguyenvisuals@gmail.com
mailto:nanlinda.ding@gmail.com
https://www.linkedin.com/learning/2d-game-design-and-development-essential-training/welcome?u=56982905
https://www.linkedin.com/learning/2d-game-design-and-development-essential-training/welcome?u=56982905

❖ Overview: Includes picking an engine, building artwork, and incorporating sound, to
publishing and marketing the finished game.

Freeman, J. (2016, December 19). C# for Unity Game Development. LinkedIn Learning.
https://www.linkedin.com/learning/c-sharp-for-unity-game-development
❖ Time: 1hr 37min
❖ Overview: To learn the structure, syntax, and language of C# as it works inside the

Unity IDE along with variables, methods, data structures, flow control, classes,
inheritance, interfaces, and composition.

Unity Technologies. Unity Essentials. Unity Learn.
https://learn.unity.com/pathway/unity-essentials
❖ Time: 11hr 15min
❖ Overview: Introduction to Unity, it’s capabilities and how to get started.

Unity Technologies. Junior Programmer. Unity Learn.
https://learn.unity.com/pathway/junior-programmer
❖ Time: 38hr 40min
❖ Overview: Learn about fundamental programming concepts such as variables, functions

and basic logic through two practical projects.

McGrath, P., & Gregan, C. (2017, August). Make Unity 3D interactive games with Fungus - no
coding!. Udemy.
https://www.udemy.com/course/make-interactive-games-with-fungus-unity3d-no-coding-requ
ired/
❖ Time: 7hr 57min
❖ Overview: Walkthrough on how to build narrative story games, point and click

adventures, and hidden object games using Unity 3D and Fungus.

Unity Technologies. Beginning 2D Game Development. Unity Learn.
https://learn.unity.com/course/beginning-2d-game-development
❖ Time: 17hr 35min
❖ Overview: Learn how to build a 2D game starting from a 2D Game Kit as well as from

scratch.

Unity Technologies. Creative Core. Unity Learn. https://learn.unity.com/pathway/creative-core
❖ Time: 19hr 45min (Missions 6-10)
❖ Overview: Learn about cameras, post-processing, audio, UI and prototyping in Unity

(Missions 6-10).

https://www.linkedin.com/learning/c-sharp-for-unity-game-development
https://learn.unity.com/pathway/unity-essentials
https://learn.unity.com/pathway/junior-programmer
https://www.udemy.com/course/make-interactive-games-with-fungus-unity3d-no-coding-required/
https://www.udemy.com/course/make-interactive-games-with-fungus-unity3d-no-coding-required/
https://learn.unity.com/course/beginning-2d-game-development
https://learn.unity.com/pathway/creative-core

Readings
Heussner, T. (2015). The game narrative toolbox (1st edition). Focal Press.
https://doi.org/10.4324/9781315766836

MCV. BizMedia. (2013, November 4). Designing game narrative: How to create a great story.
MCV/DEVELOP.
https://www.mcvuk.com/development-news/designing-game-narrative-how-to-create-a-great
-story/

Skolnick, E. (2014). Video game storytelling : what every developer needs to know about
narrative techniques (1st edition.). Watson-Guptill Publications.

Videos
● LinkedIn Learning - Unity 5: Build a Character Dialogue System
● Spiritfarer Documentary - A Game About Dying:

Spiritfarer Documentary - A Game About Dying
● Game Developers Conference (GDC) Talks:

○ Writing and Narrative Design: A Relationship

○ Storytelling with Verbs: Integrating Gameplay and Narrative

○ All Choice No Consequence: Efficiently Branching Narrative

○ Press Y to Cry: Generating Emotions in Videogame Narrative

○ Choice Architecture, Player Expression, and Narrative Design in Fallout: Ne…

○ Stories that Haunt and Heal: Mental Health and Game Narrative

○ Storytelling Tools to Boost Your Indie Game's Narrative and Gameplay

○ Evolving Emotional Storytelling in thatgamecompany's Sky

○ Life is Strange: Music in a Narrative Driven Game

Additional Optional Resources

Carnes, B. (2021, April 15). Game Development for Total Beginners - Free Unity Course.
freeCodeCamp.
https://www.freecodecamp.org/news/game-development-for-beginners-unity-course/
❖ Covers how to install Unity, an overview of Unity, the basics of C#, and how to create a

complete game from start-to-finish.

https://www.youtube.com/watch?v=qxx8sEGjntI
https://www.youtube.com/watch?v=8FgBctI5ulU
https://youtu.be/ontNUxSLhb8
https://youtu.be/TEa9aSDHawA
https://www.youtube.com/watch?v=_lp0libfp5M
https://www.youtube.com/watch?v=LR4OxNfzTvU
https://www.youtube.com/watch?v=An5XLVhrWcE
https://www.youtube.com/watch?v=8fXE-E1hjKk
https://www.youtube.com/watch?v=wQP9spsb_IQ
https://www.youtube.com/watch?v=-YjeE8uq4XA
https://doi.org/10.4324/9781315766836
https://www.mcvuk.com/development-news/designing-game-narrative-how-to-create-a-great-story/
https://www.mcvuk.com/development-news/designing-game-narrative-how-to-create-a-great-story/
https://www.linkedin.com/learning/unity-5-build-a-character-dialogue-system/welcome?autoplay=true&u=56982905
https://www.freecodecamp.org/news/game-development-for-beginners-unity-course/

Halliwell, S. (2019, October 24). Tutorial Videos. GitHub.
https://github.com/snozbot/fungus/wiki/tutorial_videos
❖ List of links to various Fungus tutorial videos.

Linares-Pellicer, J. Introduction to video game development with Unity. edX.
https://www.edx.org/course/introduction-to-video-game-development-with-unity
❖ Introductory course on how to develop multiplatform videogames using Unity.

Vázquez, J. D. Introduction to Unity for 2D Video Games. Domestika.
https://www.domestika.org/en/courses/716-introduction-to-unity-for-2d-video-games

Appendix

Games Engine Comparison
Check out our document for an in-depth comparison of 10 gameGame Engine Comparison
engines we considered for our MRP.

Games To Play
● What Remains of Edith Finch
● Life is Strange (Chapter 1 - free)
● Spiritfarer
● So May It Be
● When the Past was Around
● What Never Was (free)
● Papers, Please
● GRIS
● Detroit Become Human
● To The Moon
● Doki Doki Literature Club (free)
● Heavy Rain
● Beyond Two Souls
● Samsara Room (free)

https://docs.google.com/document/d/15QoMtZ6iWIqHP6FdOUFS13vGmhWEm0oHD9pcFe4IkV0/edit?usp=sharing
https://github.com/snozbot/fungus/wiki/tutorial_videos
https://www.edx.org/course/introduction-to-video-game-development-with-unity
https://www.domestika.org/en/courses/716-introduction-to-unity-for-2d-video-games
https://store.steampowered.com/app/501300/What_Remains_of_Edith_Finch/
https://store.steampowered.com/app/319630/Life_is_Strange__Episode_1/
https://store.steampowered.com/app/972660/Spiritfarer_Farewell_Edition/
https://store.steampowered.com/app/1274630/So_May_It_Be_A_Witch_Dating_Simulator/
https://store.steampowered.com/app/1164050/When_The_Past_Was_Around/
https://store.steampowered.com/app/866440/What_Never_Was/
https://store.steampowered.com/app/239030/Papers_Please/
https://store.steampowered.com/app/683320/GRIS/
https://store.steampowered.com/app/1222140/Detroit_Become_Human/
https://store.steampowered.com/app/206440/To_the_Moon/
https://store.steampowered.com/app/698780/Doki_Doki_Literature_Club/
https://store.steampowered.com/app/960910/Heavy_Rain/
https://store.steampowered.com/app/960990/Beyond_Two_Souls/
https://store.steampowered.com/app/1281800/Samsara_Room/

